Или книга для тех. Кто хочет думать своей головой книга первая


НазваниеИли книга для тех. Кто хочет думать своей головой книга первая
страница9/22
ТипКнига
blankidoc.ru > Туризм > Книга
1   ...   5   6   7   8   9   10   11   12   ...   22
Ф Правило 23. "Адекватности предмета и метода". Успех при использовании некоторого метода определяется тем, насколько он адекватен характеру исследуемого предмета и соответствует конкретной стадии его изучения.

  1. Борьба конкурирующих теорий, методов познания, способов мышления, т.е. таких систем, которые претендуют на решение одних и тех


68
же практических и познавательных задач, на соответствие с одним и тем же предметом или на объяснение одного и того же факта (В.Бородин). Примером могут служить противоборство истолкования прибавочной стоимости до исследований К.Маркса - монетарно-меркантилистской и физиократической на источник возникновения капитала, или волновая и корпускулярная теории света в физике.

4. Противоречия, возникающие в процессе восхождения от абстрактного к конкретному (динамические противоречия). Получаемые "словесные" противоречия есть отображения действительных противоречий, возникающих и разрешающихся в процессе движения исследуемой системы (П.Петебоков).

Исходя из описания проблемы, автор предлагает, на его взгляд, более практичную с точки зрения использования типологию познавательных и поведенческих противоречий. Рассмотренные выше познавательные противоречия являются частными случаями этой общей типологии. Логика наших рассуждений следующая: очевидно, что в основе любой проблемы лежит противоречие. Противоречия в категориальных словах можно выражать, например, в следующем виде:

а) - противоречие (вида "форма-форма") между имеющимся способом достижения цели и формой (следствием) проявления причины. Например, обвалы в горах, вызванные лавинами, разрушившие горные дороги. Цель - расчистка дорог, но имеющейся техники и/или людских ресурсов не хватает;

б) - противоречие вида "форма-содержание" между формой проявления причины и содержанием причины: классическое противоречие - "причина-следствие";

в) - противоречие между имеющейся теорией (теориями) и недостаточностью способа достижения поставленной цели на основе использования этой теории, т.е.например, теория разработана, но нет технологии ее использования;

г) - противоречие между теорией и целью (речь идет о какой-то конкретной цели), т.е. например, поставлена цель, но отсутствует теория процесса, позволяющая достичь этой цели, отсутствие необходимого знания для использования.

Это противоречие иногда может быть разрешено на основе эмпирических наблюдений, например, отсутствие теории планетарного движения не мешало жрецам древнего Египта точно предсказывать солнечные затмения и разливы Нила.

д) - противоречие между наблюдаемыми фактами и теорией и т.д.

Определив таким образом вид противоречия, можно попытаться

выяснить причину, порождающую неопределенность (тип противоречия), присущую данному противоречию, например,какая причина может вызвать

69
неопределенность для пункта в), рассмотренного выше:

  1. объективное (если человечество не достигло необходимого уровня развития знаний) или субъективное незнание (некомпетентность) о путях получения такой технологии;

  2. субъективное противодействие, в случае, если технология уже разработана, но не используется (классический пример противодействия крупных монополий новым технологиям конкурентов);

  3. объективное противодействие природных сил для разработки данной технологии, например, отсутствие невесомости на Земле для выращивания специальных кристаллов и выплавки спецсплавов.

Для разрешения противоречия вида в) необходимо либо развить способ (технологию), либо изменить цель использования процесса, явления (разумеется таких целей может быть несколько), либо изменить условия постановки цели.

Как в практической деятельности можно использовать то, о чем говорилось выше?

Во-первых, знание полной схемы возникновения противоречий (их видов и типов) позволяет не упустить из вида ни одной схемы возникновения противоречий и прогнозировать их будущее появление и развитие, что может быть использовано для страхования и профилактики рисков будущей деятельности.

Во-вторых, знание схемы позволяет планировать стратегию изменения (расширения) проблемы за счет перехода от противоречий одного вида к противоречиям другого вида (особенно интересен вопрос эквивалентности такого перехода).

В-третьих, определение вида и типа основного противоречия указывает путь к его разрешению. В самом противоречии содержится указание на пути и способы его разрешения.

При выходе на равновесие в противоречии происходит кризис системы. Примером может служить Россия, где экономические реформы опередили политическую зрелость общества. Не случайно популярен "китайский" опыт реформ. Все думают о его экономической стороне, а имеется в виду политический опыт. Стоит вспомнить и открытие закона Архимеда. От противоречия вида "цель - способ" он перешел к противоречию "теория - способ", что и явилось расширением первоначальной задачи. Архимед интуитивно использовал при решении задачи метод аналогий (аналогию собственного тела с любым материальным объектом, так называемую эмпатию).

Отметим еще один очень важный момент. Кроме парных противоречий между категориальными вопросами (внешних противоречий), существуют также внутренние противоречия внутри самого категориального вопроси.


70
Во-вторых, на более глубоком уровне лежит неопределенность, обусловленная применяемым понятийным аппаратом, который:

а) сам развивается и уточняется в ходе развития теории, и

б) каждое входящее в него понятие является своеобразной свернутой теорией, вобравшей в себя все наличное богатство человеческой мысли.

Говоря о диалектике абсолютной и относительной истины и считая теорию более или менее точной моделью действительности, мы рассматриваем ее как относительно истинную, следовательно, неопределенную. Тогда и разрешаемая ею проблема - ее оборотная сторона - все равно сохраняет такую неопределенность и служит выражением этой неопределенности.

Наконец, необходимо отметить третий вид неопределенности проблемы как системы знания. Это явное отражение неопределенности имеющегося знания в " непосредственных предпосылках проблемы".

Философы отмечают существование двух видов неопределенных ситуаций:

  1. закрытые - в них мы выделяем закрытое (конечное) множество альтернатив, обусловливающих принятие решения, отсюда формулировка решения равнозначна оценке вероятности заданных ситуаций;

  2. открытые - в них множество альтернатив четко не ограничено, оно может быть бесконечным или неопределенным. Тогда формулировка решения представляет собой нахождение или изобретение подмножества альтернатив с последующим определением их вероятности.

Развитие проблемы приводит к ограничению исходной неопределенности, т.е. к получению решения данной проблемы, когда проблема становится выраженной.

Рассмотренные выше типы познавательных противоречий являются частными случаями этой типологии, противоречия 1,2 и 4 типов относятся к противоречиям, вызванным объективным незнанием: противоречие № 1 - вид "следствие - теория (форма представления)", № 2 - вид "теория - способ", № 4 - "более ранняя форма - более поздняя форма", а противоречие № 3 - объективным противодействиям, вид - "форма № 1 - форма № 2".

Теперь, используя предложенную типологию, постараемся ответить на вопрос: какова роль противоречий в постановке проблемы?

Как известно, противоречия в познании и поведении возникают, развиваются и разрешаются в процессе человеческой деятельности из-за неравномерности развития различных форм практической и познавательной деятельности. Поэтому существенными становятся два обстоятельства:

1. Противоречия обладают количественными характеристиками, определенными для каждого конкретного случая степенями несоответствия, расхождения сторон. Учет этих количественных характеристик необходим


71
для выбора соответствующей стратегии поведения (см., например, Правило 184 "Минимальной целесообразности", п. 3.3.2 кн. 2). Если сравнительно небольшое расхождение между предсказаниями теории и данными эксперимента можно устранить посредством усовершенствования теории (разумеется, если доказано, что расхождения не связаны с погрешностями применяемых методов расчета и способов измерения), то сравнительно большие - нет. Существенные расхождения теории с фактами указывают на принципиальную ограниченность теории, на создание новой теории.

2. Противоречия познания и поведения, их системы, выступают в качестве "матрицы", которая определяет направление их разрешения. Эта конструктивная роль противоречия очевидна: противоречия удовлетворительно решаются посредством создания определенных, а не любых, теорий, методов и способов. Последнее положение лежит в основе одной из стадий алгоритма решения проблем: блок выбора наиболее "пластичного" элемента НПЭ (п. 1.7 Алгоритма) и получения идеального решения (см. п. 2.5.5).

В свое время придав понятию геометрической симметрии более общий и абстрактный характер, физики получили очень эффективный критерий для классификации элементарных частиц. Доказано, что если какой-нибудь субатомный процесс симметричен, то в нем принимает участие какая-либо константа (постоянная величина). При этом некоторые величины остаются константами ("сохраняются") во всех взаимодействиях, а другие-только в части из них. В этом случае в каждом процессе принимает участие фиксированное количество констант. Поэтому симметричность частиц и их взаимодействий воплощается в законах сохранения. Физики говорят то о симметрии процесса, то о соответствующем законе сохранения.

Существуют четыре основные разновидности законов сохранения, общие для всех процессов. Три из них связаны с простыми операциями, позволяющими достичь симметрии в обычном пространстве и времени.

  1. Симметричность в отношении пространственных перемещений: В Москве точно так же, как в Токио;

  2. симметричность в отношении перемещений во времени: понедельник в этом случае ничем не отличается от воскресенья;

  3. симметричность расположения в пространстве: исходное направление движения частиц, принимающих участие во взаимодействии (например, вдоль оси север-юг), не оказывает никакого влияния на результаты взаимодействия.

Четвертый закон сохранения звучит так: суммарный электрический заряд, присущий всем участвующим, в столкновении частицам, остается неизменным. Существуют еще несколько законов сохранения, связанных с операциями симметрии, в абстрактных математических пространствах, как

72
и закон сохранения электрического разряда. Некоторые из них соблюдаются во всех процессах, некоторые-нет. Соответствующие константы можно рассматривать как "абстрактные заряды" частиц. По той же причине, что эти "заряды" всегда принимают целые или "полуцелые" значения, они получили название "квантовых чисел", по аналогии с квантовыми числами атомной физики. Таким образом, каждая частица соотносится с определенным набором квантовых чисел, которые зависят от ее массы и полностью характеризуют все ее свойства. Например, адроны характеризуются такими величинами, как "изоспин" и "гиперзаряд". Эти два квантовых числа являются константами во всех сильных взаимодействиях. Если мы расположим восемь мезонов в соответствии со значениями этих двух квантовых чисел, то получим гексагональную модель, известную в современной физике как "мезонный октет" (см.рис. 5). При таком расположении мы наблюдаем несколько осей симметрии, так, частицы и античастицы занимают в шестиугольнике противоположные позиции, а две частицы в центре являются античастицами друг для друга. Существуют и другие симметричные модели: "барионный октет", "барионный декуплет" и т.д.

Таким образом, два взаимосвязанных понятия - симметрии и сохранения - оказываются чрезвычайно полезными при описании закономерности мира частиц. Возникает вопрос: можно ли построить аналогичные модели, связанные с понятием симметрии при анализе общих закономерностей решения проблем? Попробуем это сделать на основе рис. 6, правда в более простом исполнении (без системы координат), поскольку понятий, аналогичных "квантовым числам" (изоспин, гиперзаряд) у нас нет. Предложим простую симметричную модель, отражающую структуру проблемы (см. рис. 6). В дальнейшем эта модель будет являться основным инструментом последовательного решения проблем. Выделим в ней три основных оси симметрии в виде пар категорий, характеризующих проблему как ОЗ:

-"причина-следствие", -"цель-способ", -"среда-ограничение(я)", -"теория-практика".

В результате мы также получили октет парных категорий, отражающих структуру проблемы (см. рис. 6). Такая модель позволяет наглядно представить возможность расширения категорий-вершин (см. ниже рис. 7).

С помощью этого октета может быть построен любой вид противоречия. Следует отметить, что более мелких составных единиц познания, чем категории (причина, следствие, цель и др.) просто не существует. Здесь мы видим полную аналогию с субатомными частицами,

73
поскольку более мелких единиц вещества принципиально нельзя получить. Например,два протона при столкновении могут разлететься на множество "осколков", но среди них никогда не будет "кусочков протона" (Ф.Капра). В дальнейшем, при решении конкретных проблем (см.Проблема доставки грузов п. 3.1кн. 2) мы будем использовать октет с расширяющимися значениями категорий-вершин, своего рода аналог квантовым числам, см. рис. 7. Расширяющийся категориальный октет представляет собой графическую модель Правила 183 "Расширения проблемы", п. 3.3.2 кн. 2.



Рис. 5. Мезонный октет

Все эти категории действительно симметричны относительно друг друга и могут беспрепятственно переходить друг в друга. Физический аналог - частица и античастица).




74

Подобный октет позволяет упорядочить поиск решения проблемы (особенно при выборе обходного пути решения см. п. 1.8 Алгоритма, кн. 2). Переход от одного вида противоречия к другому на этом октете достаточно формален. Главное - корректно расписать содержание всех вершин- категорий с учетом их дальнейшего развития (расширения). Все вершины- категории до последней по "лучу", называются "промежуточными",
оследние вершины - "окончательными". Любое решение, основанное на использовании "промежуточных" вершин, называется вложением по отношению к решению, построенному на "окончательных" вершинах. Модели категориальных октетов не относятся к разряду пространственно- временных, представляя собой более обобщенное символическое изображение возможных типов противоречий (преобразований). Подобные модели переносят акцент с объектов (элементов противоречий) на события (взаимоотношения): возможные реакции между элементами противоречий: "...мир делится не на различные группы объектов, а на различные группы взаимоотношений... Единственное, что поддается выделению,- это тип взаимоотношений..." (В.Гейзенберг).


1   ...   5   6   7   8   9   10   11   12   ...   22

Похожие:

Или книга для тех. Кто хочет думать своей головой книга первая iconДля тех, кто хочет защитить свои права и права своих детей при общении...

Или книга для тех. Кто хочет думать своей головой книга первая iconДля тех, кто хочет защитить свои права и права своих детей при общении...

Или книга для тех. Кто хочет думать своей головой книга первая iconУ вас в руках первая книга об эффективности, написанная практиком,...
Эта книга для тех, кто перегружен десятками задач, требующих немедленного реагирования. Прочитав ее, вы узнаете, как выделять приоритеты,...

Или книга для тех. Кто хочет думать своей головой книга первая iconБ. Б. Баландин Реверанс читателю
Книга предназначена для школьников-эрудитов, желающих научиться нестандартно думать, для тех, кому не хватает пищи для ума, а также...

Или книга для тех. Кто хочет думать своей головой книга первая iconШериз Синклер «Мы те, кто мы есть» (книга 7) Серия
Книга предназначена только для предварительного ознакомления!

Или книга для тех. Кто хочет думать своей головой книга первая iconCодержание
...

Или книга для тех. Кто хочет думать своей головой книга первая iconГосударственная регистрация субъектов предпринимательской деятельности системы налогообложения
Пособие предназначено как для тех, кто только собирается заняться бизнесом, и ищет перспективные бизнес-идеи, оценивает потенциал...

Или книга для тех. Кто хочет думать своей головой книга первая iconЖизнь способ употребления
Книга-игра, книга-головоломка, книга-лабиринт, книга-прогулка, которая может оказаться незабываемым путешествием вокруг света и глубоким...

Или книга для тех. Кто хочет думать своей головой книга первая iconКнига первая. Тревер 1001-й чем опытнее дальнодей, тем рискованнее каждый его следующий тревер
Кир-Кор старался не думать о том, что будет, если побег состоится. «Будет макод, – подсказал ему внутренний голос. И тихо добавил:...

Или книга для тех. Кто хочет думать своей головой книга первая iconЭта книга подробно и популярно описывает коммерческие возможности...
Азбука успеха. Как построить крупную и успешную многоуровневую организацию (млм)

Вы можете разместить ссылку на наш сайт:


Все бланки и формы на blankidoc.ru




При копировании материала укажите ссылку © 2024
контакты
blankidoc.ru