Федеральное государственное бюджетное образовательное учреждение
высшего профессионального образования «Нижегородский государственный архитектурно-строительный университет»
На правах рукописи
Бобков Александр Евгеньевич
Интерактивная визуализация 3D-данных на
виртуальном глобусе в стереоскопических
системах Специальность 05.01.01 – Инженерная геометрия и компьютерная графика ДИССЕРТАЦИЯ
на соискание учёной степени
кандидата технических наук
Научный руководитель:
доктор физико-математических наук
Афанасьев Валерий Олегович Нижний Новгород — 2013
СОДЕРЖАНИЕ СОДЕРЖАНИЕ 2
ВВЕДЕНИЕ 4
ГЛАВА 1.Методы построения и визуализации виртуальных глобусов 9
1.1. Прошлое и настоящее виртуальных глобусов 9
1.2. Обзор программных решений и открытых стандартов 21
1.3. Генерация рельефа для виртуальных глобусов 26
1.4. Выводы по 1 главе 37
ГЛАВА 2.Визуализация виртуального глобуса 39
2.1. Варианты отображения виртуального глобуса 39
2.2. Полупрозрачная поверхность глобуса 47
2.3. Применимость для подземных объектов 59
2.4. Выводы по 2 главе 60
ГЛАВА 3.Визуализация данных на виртуальном глобусе 61
3.1. Облака точек 61
3.2. Объемные данные 75
3.3. Выводы по 3 главе 84
ГЛАВА 4.Описание программного комплекса 84
4.1. Программный комплекс 85
4.2. Стереоскопическая визуализация 90
4.3. Навигация и взаимодействие 96
4.4. Выводы по 4 главе 114
ЗАКЛЮЧЕНИЕ 115
БЛАГОДАРНОСТИ 117
СЛОВАРЬ ТЕРМИНОВ 118
СПИСОК ЛИТЕРАТУРЫ 119
ПРИЛОЖЕНИЕ А. Источники геоданных 131
ПРИЛОЖЕНИЕ Б. Шейдеры для объемной визуализации 134
ПРИЛОЖЕНИЕ В. Расчет стереоэффекта 137
ПРИЛОЖЕНИЕ Г. Аппаратное обеспечение 143
ВВЕДЕНИЕ Общая характеристика работы
Развитие виртуальных глобусов началось около 10 лет назад. Под виртуальным глобусом понимается трехмерная модель планеты Земля, воссозданная с определенной точностью по спутниковым данным, с интерактивным программным обеспечением, которое позволяет работать с трехмерной моделью Земли, рассматривать её на любых масштабах и визуализировать данные (объекты, модели) с привязкой к географическим координатам. Первые глобусы позволяли просматривать высокодетализированные спутниковые снимки, наложенные на трехмерный рельеф. Последние годы растет интерес к использованию виртуальных глобусов для более практических задач визуализации и анализа различных типов данных на глобусе. Во-первых, появились спутниковые данные высокого разрешения, цифровая модель рельефа почти всей Земли в свободном доступе (SRTM). Во-вторых, широкое распространение получил интернет, что позволило хранить большие объемы спутниковых данных на удаленных серверах. Видеокарты позволили интерактивно отображать трехмерный рельеф, высокодетализированную спутниковую подложку и дополнительные эффекты вроде атмосферного рассеяния. Основные области применения: геоинформационные системы (ГИС), системы автоматизированного проектирования и исследования процессов, компьютерные игры и т.п.
Таким образом, в настоящее время виртуальный глобус является мощным инструментом для специалистов разных областей, которым требуется визуализация данных в географическом контексте. Виртуальный глобус может стать единой платформой для визуализации всех типов данных с географической привязкой. Для этого необходимо разрабатывать методы визуализации указанных данных, методы взаимодействия и управления данными в трехмерном пространстве.
В отечественной науке существенный вклад в развитие теоретических основ и практических решений в области геометрического моделирования и визуализации внесен научными школами Бондарева А.Е., Васина Ю.Г., Галактионова В.А., Дебелова В.А., Денискина Ю.И., Долговесова Б.С., Желтова С.Ю., Журкина И.Г., Кеткова Ю.Л., Кучуганова В.Н., Никитина И.Н., Роткова С.И., Сурина А.И., Толока А.В., Турлапова В.Е., Утробина В.А. и ряда других исследователей.
Актуальность работы обусловлена тем, что, не смотря на существование в настоящее время большого количество реализаций различных алгоритмов генерации и визуализации виртуального глобуса (включая атмосферу), визуализации 3D-данных на глобусе (3D-модели, векторные наложения на рельеф) и др., пока остаются нерешёнными задачи визуализации полупрозрачной поверхности на глобусе, визуализации облаков точек и объемных данных на глобусе, необходимые для создания программных систем визуализации научных данных (в частности, подземных геофизических данных), данных лазерного сканирования и других видов данных, которые появляются в настоящее время как следствие использования новых методов и аппаратуры зондирования.
Цель диссертационной работы состоит в создании алгоритмического и программного обеспечения формирования и визуализации пространственной географической информации.
Для достижения поставленной цели необходимо было решить следующие задачи:
разработать способ визуализации глобуса с полупрозрачной поверхностью с возможностью как надземного, так и подземного просмотра;
разработать алгоритмы визуализации облаков точек и объемных данных с учетом особенностей виртуального глобуса и виртуального окружения;
разработать программный комплекс для стереоскопической визуализации данных на виртуальном глобусе, проектирования, конструирования в общегеографическом контексте.
Научная новизна:
Разработан новый способ визуализации виртуального глобуса, который позволяет, благодаря полупрозрачной поверхности, визуализировать 3D-объекты под поверхностью глобуса и обеспечить отсутствие графических артефактов, связанных с полупрозрачностью, и возможность как надземного, так и подземного просмотра.
Разработан новый алгоритм визуализации облаков точек, характерной особенность которого является использование географических координат, возможность работы с облаками точек любого размера и динамическая фильтрация точек на графическом процессоре по заданным критериям.
Разработан новый алгоритм визуализации объемных данных на виртуальном глобусе, который работает с данными в географической системе координат и при визуализации учитывает форму глобуса.
Практическая значимость.
Результаты работы были использованы для создания интерактивного научно-популярного приложения «Виртуальная Долина гейзеров», которое было внедрено и используется в музее Кроноцкого государственного природного биосферного заповедника.
Результаты работы были использованы для реалистичной визуализации горнолыжных трасс для горнолыжного тренажера в Московском физико-техническом институте. Диссертант является соавтором статьи по горнолыжному тренажеру, которая была доложена на конференции Cyberworlds 2011 и получила награду Best Paper Award.
Результаты работы также внедрены в Институте проблем безопасного развития атомной энергетики Российской академии наук, Всероссийском научно-исследовательском институте по эксплуатации атомных электростанций, Институте истории естествознания и техники Российской академии наук, Институте физико-технической информатики.
Основные положения, выносимые на защиту:
Способ визуализации виртуального глобуса с полупрозрачной поверхностью рельефа, который обеспечивает как надземный, так и подземный просмотр геометрических объектов под поверхностью глобуса и устраняет графические артефакты, вызванные перекрытием слоев рельефа и вспомогательной геометрии.
Алгоритм визуализации облаков точек на глобусе с уровнями детализации, учетом формы глобуса, контролем плотности точек на экране и фильтрации по заданным критериям на графическом процессоре.
Алгоритм визуализации объемных данных, заданных в географической системе координат и учитывающий форму глобуса.
Достоверность изложенных в работе результатов обеспечивается корректным применением аппарата компьютерной геометрии и графики, подтверждена экспериментальным тестированием алгоритмов и программ, результатами опытной эксплуатации разработанных программных средств.
Апробация работы.
Основные результаты диссертации докладывались на следующих конференциях: международных конференциях MEDIAS 2010, MEDIAS 2011, MEDIAS 2012 (2010 г., 2012 г., г. Лимассол, Республика Кипр), Графикон 2010 (2010 г., г. Санкт-Петербург), Графикон 2012 (2012 г., г. Москва), «Ситуационные центры и информационно-аналитические системы класса 4i» (2011 г., г. Москва), на 53-й научной конференции МФТИ (2010 г., г. Долгопрудный), на 54-й научной конференции МФТИ (2011 г., г. Долгопрудный), на 3-й научно-технической конференции «Проблемы комплексного геофизического мониторинга Дальнего Востока России» (2011 г., г. Петропавловск-Камчатский).
Результаты работы демонстрируются посетителям Постоянно действующей выставки достижений РАН. В августе 2012 результаты работы были представлены участникам 33-й Генеральной ассамблеи Европейской сейсмологической комиссии и были высоко оценены ими.
Работа велась в том числе в рамках грантов РФФИ 12-07-31043 мол_а, 10-07-00407-а.
Публикации. Основные результаты по теме диссертации изложены в 12 научных работах, 4 из которых опубликованы в изданиях, рекомендованных ВАК Минобрнауки России.
Структура и объем диссертации
Диссертация состоит из введения, 4 глав, заключения, словаря терминов, библиографии и 4 приложений. Общий объем диссертации 143 страницы, из них 113 страницы текста, включая 70 рисунков. Библиография включает 144 наименований на 12 страницах.
|